Dodano: 28 czerwiec 2023r.

Elektroliza napędzana światłem

Bardzo dobrą wydajność fotoelektrokatalitycznego rozkładu wody uzyskał zespół zainicjowany przez badaczkę z WAT. Opracowane przez nią materiały mogą znaleźć zastosowanie w produkcji wodoru z wody pod wpływem światła. To obiecująca alternatywa dla obecnie stosowanych metod pozyskiwania tego nośnika energii - poinformowała uczelnia.

Elektroliza napędzana światłem

 

Jako pierwsza autorka publikacji na łamach "Materials Horizons" (DOI: 10.1039/d2mh00718e) dr Ewa Wierzbicka z Wydziału Nowych Technologii i Chemii Wojskowej Akademii Technicznej otrzymała tytuł "Emerging Investigator", przyznawany młodym naukowcom przez ten dwumiesięcznik naukowy. Praca ma drugą lokatę w rankingu najlepszych publikacji, które ukazały się w 2022 roku w czasopiśmie, tzw. "2022 Materials Horizons Outstanding Paper Award". Nagrodę otrzymują autorzy korespondencyjni, czyli odpowiedzialni za kierunek prowadzonych badań i całokształt artykułu. Wyróżniane są prace proponują nową koncepcję lub nowy sposób myślenia, a nie tylko modyfikację czy ulepszenie wcześniejszych pomysłów.

Fotoelektrokatalityczny rozkład wody

- Fotoelektrochemiczne oraz fotokatalityczne wydzielanie wodoru (czyli bez przyłożenia zewnętrznego napięcia), to – w idealnych warunkach – jedne z najbardziej ekologicznych metod pozyskiwania wodoru. Teoretycznie są to metody o zerowej (fotokataliza) lub blisko zerowej (fotoelektrokataliza) emisji dwutlenku węgla do atmosfery, a co więcej - prawie bezkosztowe lub bezkosztowe, gdyż bazują na wykorzystaniu energii słonecznej - zauważa dr Wierzbicka. - Niestety nadal mierzymy się nie tylko z problemami związanymi ze zwiększeniem wydajności produkcji wodoru, stabilnością materiałów fotoaktywnych, ale również z wieloma innymi aspektami technologicznymi procesu dotyczącymi pracy całego układu. Nie ukrywam, że do wdrożenia tej metody jest jeszcze bardzo daleka droga. Niemniej jednak wierzę, że dzięki niestrudzonej pracy naukowców z całego świata uda się nam rozwiązać te trudności, aby umożliwić wydajne i ekologiczne wytwarzanie wodoru przy pomocy światła słonecznego - dodaje.

Naukowcy wytworzyli membrany z nanoporowatego tlenku tytanu wypełnione złotymi nanodrutami. Jak tłumaczy dr Wierzbicka, nowatorskie jest nie tylko połączenie znanych technik anodyzacji i elektroosadzania do wytworzenia tych materiałów, ale także zaprojektowanie morfologii powierzchni, która pozwala poprawić wydajność wydzielania wodoru. - Wykorzystaliśmy dwie metody syntezy, czyli anodyzację w celu uzyskania nanoporowatych struktur TiO2 oraz elektroosadzanie złota w porach tego tlenku w celu utworzenia warstwy nanodrutów. Oryginalnym pomysłem było utworzenie nanoporowatej membrany TiO2 wypełnionej nanodrutami ze złota, odłączonej od podłoża tytanowego, a także wykorzystanie tych nanodrutów jako kolektora fotowzbudzonych elektronów do rozdziału i szybkiego transportu ładunków elektrycznych - wyjaśnia badaczka.

Wykorzystanie energii słonecznej

Nowe materiały mają zdolność do absorpcji światła i przetwarzania tej energii do wytworzenia wiązań chemicznych – w tym przypadku rozkładu wody z wytworzeniem gazowego wodoru i tlenu. W trakcie tego procesu generowane są tzw. fotoprądy, które świadczą o przepływie ładunków pomiędzy elektrodami, na których dochodzi do wydzielenia odpowiednio tlenu i wodoru. W przeciwieństwie do typowej elektrolizy, gdzie proces napędzany jest przez przyłożone zewnętrzne napięcie o relatywnie wysokim potencjale, tu główną siłą napędową procesu jest energia słoneczna. Niewielkie napięcie zewnętrzne służy tylko do ukierunkowania przepływu ładunków, wymuszenia przepływu elektronów i dziur do powierzchni przeciwnych elektrod.

- W porównaniu do komercyjnie stosowanego procesu elektrolizy – w badanej przeze mnie metodzie zapotrzebowanie na energię elektryczną, która musi zostać dostarczona do układu, jest znacznie mniejsze dzięki wykorzystaniu energii słonecznej, co z ekonomicznego i ekologicznego punktu widzenia jest bardzo korzystne - ocenia dr Wierzbicka.

Badania zainicjowane zostały podczas pobytu uczonej na stypendium Humboldta w Berlinie, kontynuowane we współpracy z grupą elektrochemii Uniwersytetu Jagiellońskiego, a ukończone w WAT. Współautorami artykułu są elektrochemicy z UJ: dr Karolina Syrek, prof. dr hab. Grzegorz Dariusz Sulka oraz naukowcy niemieccy: dr Thorsten Schultz, prof. dr Norbert Koch oraz prof. dr Nicola Pinna.

 

Źródło: www.naukawpolsce.pl, fot. PxFuel/CC0