Dodano: 22 maj 2020r.

Jak jony miedzi łączą się z białkami?

Zespół prof. Wojciecha Bala z Instytutu Biochemii i Biofizyki PAN zbadał mechanizmy odpowiedzialne za transport miedzi do komórek organizmu. Naukowcy wykazali eksperymentalnie, że mechanizm wiązania jonów miedzi do białek oraz czas na to potrzebny są inne, niż dotychczas sądzono.

Laboratorium

 

Związek miedzi z chorobami cywilizacyjnymi

Od kilkunastu lat rośnie liczba doniesień naukowych na temat związku między zawartością miedzi w różnych tkankach organizmu człowieka a chorobami cywilizacyjnymi, takimi jak choroba Alzheimera czy cukrzyca typu 2. W dalszym ciągu jednak te obserwacje kliniczne nie znajdują wyjaśnienia na poziomie molekularnym. Lukę tę próbuje wypełnić wielu badaczy na całym świecie, w tym naukowcy z grupy prof. Wojciecha Bala w Instytucie Biochemii i Biofizyki PAN. Wykazali oni eksperymentalnie, że czas potrzebny do związania jonów miedzi do białek a także mechanizm tego procesu są inne niż dotąd sądzono.

Badania ukazały się z wyróżnieniem edytorów w czasopiśmie "Angewandte Chemie International Edition".

Nieznany mechanizm wiązania jonów miedzi do białek

Wspólnie z badaczami z Politechniki w Delft (Niderlandy) i Politechniki Warszawskiej uczeni sprawdzili, jak szybko jon miedzi reaguje z syntetycznym peptydem, który wiąże ten mikroelement tak samo, jak naturalne białka transportujące go pomiędzy krwią a komórkami. Dotychczas uważano, że jest to bardzo szybki proces jednoetapowy, zachodzący w ciągu mikrosekund. Badania wykonane w Warszawie i Delft wykazały, że proces ten ma aż trzy etapy.

W najwolniejszym z nich przez blisko sekundę utrzymuje się nieznana wcześniej reaktywna forma pośrednia. Stanowi ona brakujące ogniwo w procesie transportu miedzi do komórek, dla którego znany był dotąd jedynie niereaktywny stan końcowy. Odkrycie to otwiera drogę do szczegółowych badań biologicznych, a w perspektywie do pełniejszego zrozumienia przyczyn chorób cywilizacyjnych i opracowania strategii ich prewencji.

Badania przeprowadzono za pomocą technik kinetyki chemicznej, elektrochemii i spektroskopii elektronowej. Podczas eksperymentów wykorzystano m. in. unikatową aparaturę zamrażającą stan reakcji w skali mikrosekundowej, dostępną w laboratorium prof. Petera-Leona Hagedoorna w Delft.

 

Źródło: www.naukawpolsce.pap.pl