Z cieczy zawierającej mikrocząstki można za pomocą elektrody wyciągać zaskakująco długie łańcuchy drobin. Ogniwa tych łańcuchów są ze sobą spojone przez otaczającą je cienką warstwę cieczy. To spektakularne zjawisko zostało odkryte przy udziale polskich badaczy i opisane w prestiżowym piśmie „Nature Communications”.
Po raz pierwszy zauważyli je, zbadali i opisali naukowcy z Instytutu Chemii Fizycznej PAN, Wydziału Fizyki Uniwersytetu Adama Mickiewicza w Poznaniu (UAM), Northwestern University w Evanston (Illinois, USA) oraz Wydziału Fizyki Uniwersytetu Warszawskiego (FUW). To spektakularne zjawisko opisano w znanym czasopiśmie Nature Communications.
Choć odkrycie jest świeże, wydaje się, że atrakcyjne właściwości koloidalnych i ziarnistych łańcuchów zostaną szybko wykorzystane. Już teraz trwają prace nad użyciem zjawiska do produkcji cienkich, przewodzących struktur osadzanych na podłożach o różnej chropowatości i właściwościach. Struktury te mogłyby być elementami np. elastycznych układów elektronicznych. Potencjalnie łańcuchy można byłoby tworzyć także z żywych komórek, co otwierałoby drogę do ewentualnych zastosowań biotechnologicznych czy nawet medycznych.
– Zapewne każdy miał okazję widzieć u mamy czy babci naszyjniki z korali nawleczonych na nić. Łańcuchy mikrocząstek, wytwarzane i badane przez nasz zespół, są do nich z wyglądu bardzo podobne, lecz mają znacznie mniejsze rozmiary. Najciekawsza jest jednak działająca tu fizyka. Za powstawanie tych regularnych struktur odpowiada zespół wcale nietrywialnych zjawisk, a rolę nici łączącej poszczególne drobiny pełni… ciecz. Co więcej, nić w naszyjniku przechodzi przez środki koralików, podczas gdy nasza nić, czyli ciecz, mikrocząstki otacza – mówi dr Filip Dutka (FUW).
– Samo odkrycie zjawiska – do czego doszło w trakcie doświadczeń prowadzonych w Instytucie Chemii Fizycznej PAN – było dość przypadkowe – wspomina dr Zbigniew Rozynek, główny autor publikacji w czasopiśmie „Nature Communications”, obecnie pracujący na Wydziale Fizyki UAM. – Za pomocą elektrody pod napięciem kilkuset woltów badałem szklane mikrobańki pływające na powierzchni oleju. W pewnej chwili wyciągnąłem elektrodę z cieczy i ze zdziwieniem zauważyłem na jej końcu długi, bardzo regularny łańcuszek, który po obejrzeniu pod mikroskopem okazał się mieć grubość pojedynczej drobiny – dodaje.
Jak zbudować koloidalny łańcuch? Wystarczy wziąć naczynie z nieprzewodzącą cieczą, dodać kuliste i przewodzące drobiny, całość wymieszać. Gdy do tak przygotowanej zawiesiny zbliżymy elektrodę (np. w kształcie igły), jej koniec przyciągnie którąś kulkę. Ponieważ ta przewodzi prąd, staje się przedłużeniem elektrody. Przy odpowiednio dobranej wartości napięcia możliwe staje się wyciąganie z cieczy kulki za kulką, co skutkuje uformowaniem się łańcuszka drobin otoczonych warstewką cieczy. Między każdą parą „ogniw” ciecz tworzy mostek kapilarny, przyciągający sąsiednie drobiny do siebie. Powstają wtedy stałe w czasie styki elektryczne. Dzięki nim prąd płynie przez cały łańcuch niemal równie wydajnie jak przez pojedynczą drobinę i w efekcie ostatnio dołączona kulka jest w stanie przyciągnąć kolejną z roztworu.
– W uformowanym łańcuchu mostki kapilarne, kształtem przypominające klepsydrę, znajdują się między wszystkimi kolejnymi kulkami. Po wyłączeniu napięcia ich rola staje się wręcz kluczowa: przyciągając kulki do siebie, odpowiadają za utrzymanie łańcucha w całości. A ponieważ mostki kapilarne to po prostu ciecz, uformowany łańcuch pozostaje konstrukcją bardzo giętką – wyjaśnia dr Dutka.
Długość łańcuchów koloidalnych zależy od liczby i ciężaru mikrocząstek, co zazwyczaj ma ścisły związek z rozmiarami tych ostatnich. Polscy badacze, finansowani z grantów Narodowego Centrum Nauki i Fundacji na rzecz Nauki Polskiej, przeprowadzili eksperymenty dla cząstek o średnicach od ok. 100 nanometrów do 200 mikrometrów. Łańcuchy wytworzone z mikronowych cząstek liczyły nawet kilka tysięcy elementów i osiągały długość rzędu kilkunastu centymetrów.
Źródło: Wydziału Fizyki Uniwersytetu Warszawskiego, PAP – Nauka w Polsce, fot. UAM