Zespół kierowany przez Polaków jako pierwszy na świecie zbudował sieć neuronową (sztuczny neuron) opartą o „masywne” fotony – cząstki światła zachowujące się tak, jakby miały masę (tzw. polarytony). Badacze mają nadzieję, że wykorzystanie światła w obliczeniach sztucznej inteligencji jest szansą na duże oszczędności energii.
Sztuczne sieci neuronowe używane są dziś w coraz większej liczbie zastosowań: w rozpoznawaniu mowy i głosu, obrazów, w tłumaczeniu tekstów, w sterowaniu pojazdami autonomicznymi. – Ilość danych, które chcemy przetwarzać, rośnie, a moc obliczeniowa potrzebna sieciom neuronowym jest bardzo duża i osiąga już limity. Poza tym do przetwarzania tych danych potrzebna jest ogromna ilość energii. Warto zastanowić się więc nad nowymi technologiami – mówi prof. Michał Matuszewski z Instytutu Fizyki PAN.
Urządzenia wykorzystujące fotony
Zdaniem prof. Matuszewskiego nadzieją jest tu przechodzenie z urządzeń elektronicznych – działających za sprawą elektronów – do urządzeń, które wykorzystywać będą fotony, a więc cząstki światła. – Fotony są o tyle dobre, że – w przeciwieństwie do elektronów – ich propagacja odbywa się właściwe bez strat energii – mówi prof. Matuszewski. Zwraca uwagę, że od dawna stosuje się już tę ideę w telekomunikacji – do przesyłania informacji na duże odległości wykorzystywane są przecież światłowody, a nie elektroniczne kable. Światło jednak cały czas nie jest jeszcze stosowane w wykonywaniu obliczeń komputerowych.
Fotony są o tyle trudne do wykorzystania w obliczeniach, że – w przeciwieństwie do elektronów – nie oddziałują ze sobą. A takie oddziaływania przydają się choćby do wykonywania operacji w tradycyjnych bramkach logicznych. Naukowcy z Wydziału Fizyki Uniwersytetu Warszawskiego – jako pierwsi na świecie – zbudowali sieć neuronową, której działanie jest oparte o fotony zachowujące się tak, jakby miały masę (kwazicząstki – tzw. polarytony). Badania ukazały się w czasopiśmie naukowym „Nano Letters„.
– My w swoich badaniach proponujemy rozwiązanie, które jest hybrydą elektroniki i fotoniki. Sieci neuronowe, które zaprojektowaliśmy, mają niskie zużycie energii, ale pozwalają wykonywać operacje z dużą skutecznością – mówi prof. Michał Matuszewski.
Oddziaływanie światła z materią
W badaniach Polaków fotony więzione są w tzw. mikrownękach optycznych – wpuszcza się je pomiędzy dwa supergładkie lustra. – W takich warunkach można sprawić, że zachowują się jak cząstki z bardzo małą masą. Dołożenie do tego elektronów powoduje, że one mogą ze sobą oddziaływać. Fotony takie nazywamy polarytonami. Mamy więc tam silne oddziaływanie światła z materią – mówi współautorka pracy dr hab. Barbara Piętka.
– Światło to wykorzystaliśmy do nauki rozpoznawania wzorców – dodaje prof. Matuszewski. I opisuje, że sieć optyczną nauczono rozpoznawania odręcznie pisanych cyfr (tzw. baza MNIST) ze skutecznością 96 proc. A to znaczy, że sztuczny neuron myli odręcznie napisane cyfry tylko raz na 25 prób. A podczas wykonywania jednej operacji zużywa bardzo mało energii – zaledwie 16 pikodżuli.
– To na razie prototyp. Zrealizowaliśmy sztuczny neuron, a konkretnie 1 bramkę logiczną XOR, która wykonuje operacje w sposób sekwencyjny – jedna po drugiej – mówi prof. Matuszewski.
Polarytony
Pierwszy autor publikacji Rafał Mirek dodaje, że bramka XOR jest bramką wykonującą operacje logiczne. Jest ona jednak o tyle szczególna, że to bramka nieliniowa. – Na układzie, w którym wykonaliśmy naszą bramkę, możemy zrealizować dowolną inną bramkę logiczną i wykonywać przeróżne operacje logiczne – zwraca uwagę.
– Światło i materię mieszamy po to, żeby oddziaływania, które powstają w układzie, miały charakter nieliniowy. Nieliniowość ta jest niezbędna do efektywnej realizacji sztucznego neuronu – dodaje kolejny współautor pracy, Andrzej Opala.
Prof. Barbara Piętka uszczegóławia, że polarytony mają – w odróżnieniu od zwykłych fotonów – bardzo małą (ale niezerową) masę. Przez to następuje tam przejście do tzw. kondensatu Bosego-Einsteina. – Mówi się, że kondensat Bosego-Einsteina to piąty stan materii: po ciele stałym, cieczy, gazie czy plazmie. To układ, w którym cząstki – a dokładniej bozony, wykazują nowe własności kwantowe. Przejście do tego stanu jest silnie nieliniowe – opowiada.
Na razie eksperymenty zespołu wykonywane są w temperaturach ciekłego helu. – Pracujemy już nad układami działającymi w temperaturze pokojowej. Jesteśmy przekonani, że to da się zrobić. A jest to ważny warunek, żeby rozwiązanie mogło znaleźć praktyczne zastosowanie w technologii – mówi jeden z autorów badania, dr inż. Krzysztof Tyszka.
Naukowiec zapytany jak sobie wyobraża – w odległej przyszłości – praktyczne zastosowania fotonicznych sieci neuronowych, odpowiada: „na końcu drogi chcielibyśmy, stworzyć scalony układ fotoniczno-elektroniczny, który można byłoby np. wykorzystać jako układ sterowania samochodu autonomicznego. Takie układy mogłyby przetwarzać informacje o warunkach na drodze znacznie efektywniej niż dotychczas – przy niskim zużyciu energii, bez potrzeby łączenia się z Internetem”.
Źródło: www.naukawpolsce.pap.pl, fot. Mateusz Król, Wydział Fizyki UW, R. Mirek et al., Nano Letters 2021