Gdy jądro atomu zostanie wzbudzone, jego kształt może się na bardzo krótką chwilę zmienić. Dotąd zjawisko to obserwowano w najbardziej masywnych pierwiastkach. Wreszcie jednak badaczom – w tym z Polski – udało się zaobserwować „drugie oblicze” jądra lekkiego pierwiastka.
Teraz się okazuje, że jądra pierwiastków znacznie lżejszych, takich jak nikiel, również mogą nieco dłużej zastygnąć w swoim nowym kształcie. Odkrycia dokonał zespół naukowców z Włoch (UniMi), Polski (Instytut Fizyki Jądrowej PAN w Krakowie), Rumunii (IFIN-HH), Japonii (Uniwersytet Tokijski) oraz Belgii (Uniwersytet Brukselski).
Obliczenia niezbędne do przygotowania eksperymentu okazały się tak skomplikowane, że do ich przeprowadzenia trzeba było użyć infrastruktury komputerowej składającej się z około miliona procesorów. Wysiłek nie poszedł na marne: publikacja opisująca osiągnięcie została wyróżniona przez redaktorów prestiżowego czasopisma fizycznego „Physical Review Letters”. O badaniach poinformowali przedstawiciele IFJ PAN w przesłanym PAP komunikacie.
Większość jąder atomowych to struktury w mniejszym lub większym stopniu zdeformowane, spłaszczone lub wydłużone wzdłuż jednej, dwóch, a nierzadko nawet wszystkich trzech osi. Co więcej, tak jak piłka spłaszcza się mniej lub bardziej w zależności od siły wywieranej na nią przez dłoń, tak jądra atomowe mogą zmieniać swoją deformację w zależności od ilości posiadanej energii, nawet gdy się nie kręcą.
– Gdy jądru atomowemu dostarczymy odpowiednią porcję energii, może ono przejść do stanu o innej deformacji kształtu niż typowa dla stanu podstawowego. Taka nowa deformacja – mówiąc obrazowo: nowa twarz – jest jednak bardzo nietrwała. Jak piłka po odsunięciu dłoni, którą ją wcześniej zniekształcała, tak jądro wraca do swojej pierwotnej postaci, tyle że robi to znacznie, znacznie szybciej, w czasach rzędu miliardowych części jednej miliardowej sekundy lub nawet krótszych. Zamiast o „drugiej twarzy” jądra atomowego, lepiej więc chyba mówić tu tylko o „grymasie” – opisuje prof. Bogdan Fornal (IFJ PAN).
W ostatnich kilkudziesięciu latach zebrano dowody potwierdzające, że w jądrach niewielkiej liczby pierwiastków występuje jednak stosunkowo stabilny stan ze zdeformowanym kształtem.
Pomiary wykazały, że jądra niektórych aktynowców – pierwiastków o liczbach atomowych od 89 (aktyn) do 103 (lorens) – są zdolne utrzymać swoją „drugą twarz” nawet dziesiątki milionów razy dłużej niż pozostałe jądra. Aktynowce to pierwiastki o sumarycznej liczbie protonów i neutronów znacznie przekraczającej 200, a więc bardzo masywne. Wśród nieobracających się jąder pierwiastków lżejszych dotychczas nigdy nie zaobserwowano stanu wzbudzonego ze zdeformowanym kształtem, charakteryzującego się zwiększoną stabilnością.
Prof. Fornal z prof. Michelem Sferrazzą (Uniwersytet w Brukseli) już trzy dekady temu zwrócili uwagę, że teoria pozwala, by w jądrach pierwiastków lekkich istniały stabilne stany zdeformowane kształtem. Ich uwagę przykuł nikiel-66.
Dopiero niedawno jednak udało się zrealizować doświadczenie w tym zakresie. Na akceleratorze w Bukareszcie tarczę z niklu-64 ostrzeliwano jądrami tlenu-18. Podczas zderzeń tych może powstawać nikiel-66, którego jądro w kształcie podstawowym przypomina niemal idealną kulę. Przy właściwie dobranych energiach zderzeń niewielka część tak utworzonych jąder Ni-66 trafia do pewnego stanu ze zdeformowanym kształtem, który – jak wykazały pomiary – okazał się nieco trwalszy od wszystkich innych stanów wzbudzonych związanych ze znacznym odkształceniem. Innymi słowy, jądro znalazło się w lokalnym, głębokim minimum potencjału.
– Zmierzone przez nas wydłużenie czasu życia stanu ze zdeformowanym kształtem jądra Ni-66 nie jest tak spektakularne jak u aktynowców, gdzie sięgało dziesiątków milionów razy. My zarejestrowaliśmy wzrost jedynie pięciokrotny. Niemniej i tak pomiar okazał się wyjątkowy, ponieważ wśród jąder lekkich jest pierwszą obserwacją tego typu – podsumowuje prof. Fornal.
Na zdjęciu wnętrze rumuńskiego ośrodka akceleratowego IFIN-HH, gdzie dokonano obserwacji.
Źródło: PAP – Nauka w Polsce, fot. IFIN-HH