Dodano: 30 grudnia 2021r.

Naukowcy z UPWr udowodnili, że Einstein się nie mylił

Naukowcy z Instytutu Geodezji i Geoinformatyki UPWr oraz Europejskiej Agencji Kosmicznej (ESA) po raz pierwszy udowodnili na podstawie obserwacji trajektorii ruchu satelitów nawigacyjnych, że Einstein prawidłowo przewidział zmiany kształtu orbit obiektów krążących wokół Ziemi. Wykorzystali do tego 3 lata ciągłych obserwacji z ponad 100 stacji rozmieszczonych na wszystkich kontynentach śledzących nieustannie ok. 80 satelitów systemów GPS, GLONASS i Galileo.

Naukowcy z UPWr udowodnili, że Einstein się nie mylił

 

Wcześniej słuszność ogólnej teorii względności Einsteina została udowodniona z wykorzystaniem zegarów atomowych instalowanych na satelitach. Jednakże do dnia dzisiejszego nikomu nie udało się potwierdzić zmian wielkości i kształtu orbit satelitów krążących wokół Ziemi przewidywanych przez teorię względności. Najnowsze badania naukowców z IGiG i ESA potwierdziły możliwość bezpośredniego pomiaru nie tylko dylatacji czasu, ale również deformacji geometrii czasoprzestrzeni, a zatem i zmian kształtu orbit satelitów nawigacyjnych GPS, GLONASS i Galileo, a w szczególności pary satelitów Galileo, które przez przypadek zostały umieszczone na orbitach eliptycznych.

Jakie efekty nie zostały dotychczas udowodnione?

Ogólna teoria względności została potwierdzona z bardzo wysokim poziomem wiarygodności na podstawie zmiany upływu czasu rejestrowanej przez zegary atomowe. Ale oprócz zmian w upływie czasu teoria względności przewiduje niewielkie deformacje kształtu i wielkości orbit satelitów krążących wokół Ziemi. Zmiany geometrii czasoprzestrzeni, a więc orbit sztucznych satelitów, są na tyle małe, że dotychczas nikt ich nie był w stanie pomierzyć. Aż do dzisiaj....

Projekt Europejskiej Agencji Kosmicznej

ESA sfinansowała projekt naukowy, którego celem było potwierdzenie ogólnej teorii względności wykorzystując satelity nawigacyjne Galileo, GPS i GLONASS. Dlaczego właśnie te satelity? Satelity nawigacyjne są nieustannie śledzone przez stacje permanentne GNSS rozmieszczone na wszystkich kontynentach. Do tego nadają sygnały na kilku częstotliwościach, integrują technikę laserową i mikrofalową na pokładzie, a dzięki dostępności bardzo dokładnych informacji dotyczących konstrukcji satelitów, naukowcy z IGiG opracowali modele satelitów pozwalające na wyznaczanie ultra-dokładnych orbit oraz przewidywanie, gdzie satelity znajdą się w przyszłości. Dzięki temu, można wyznaczać pozycję satelitów nawigacyjnych z dokładnością od kilku do kilkunastu milimetrów oraz przewidywać pozycję satelitów z dokładnością kilkudziesięciu centymetrów po jednej dobie. Należy przy tym pamiętać, że satelity poruszają się nieustannie z prędkością kilku kilometrów na sekundę!

Dodatkowo pierwsza para operacyjnych satelitów Galileo została wyniesiona przez rakietę nośną Sojuz na złą orbitę – eliptyczną zamiast kołowej. Satelity orbitują od wysokości 17180 km do 26020 km, zamiast znajdować się na stałej wysokości 23225 km. ESA postanowiła wykorzystać te satelity do badań, które wcześniej nie były możliwe. Mianowicie do zbadania efektów wynikających z ogólnej teorii względności, które jak już wiemy różnią się w zależności od wysokości satelity nad powierzchnią Ziemi.

Trzy warianty ruchu satelitów

Naukowcy z IGiG rozpoczęli swoje badania od wyprowadzenia teoretycznych efektów wynikających z ogólnej teorii względności. Okazało się, że według teorii kształt i rozmiar orbit satelitów musi się zmieniać, przy czym zmiany powinny być największe dla satelitów na orbitach eliptycznych.

Następnym krokiem było potwierdzenie słuszności przewidywań teoretycznych z wykorzystaniem rzeczywistych dany satelitarnych. Do tego celu wykorzystano trzy lata ciągłych obserwacji satelitów GPS, GLONASS i Galileo, sieć ponad 100 stacji permanentnych GNSS znajdujących się na wszystkich kontynentach oraz ok. 80 aktywnych satelitów.

Naukowcy przetworzyli obserwacje satelitarne w trzech wariantach:

Wariant 1: zakładał, że teoria Newtona opisująca ruch satelitów jest prawdziwa oraz że nie trzeba stosować poprawek ogólnej teorii względności Einsteina.

Wariant 2: zakładał słuszność ogólnej teorii względności z uwzględnieniem poprawek na ruch satelity, które z niego wynikają.

Wariant 3: zakładał, że teoria względności jest prawdziwa, ale Einstein mylił się, co do wartości krzywizny i nieliniowości czasoprzestrzeni. Wariant ten pozwala na znalezienie przez satelity GPS, GLONASS i Galileo optymalnej wartości krzywizny i nieliniowości czasoprzestrzeni. Innymi słowy, satelity mogą poruszać się dowolnie, a jedyne, co je ogranicza, to pomiary odległości realizowane przez stacje naziemne.

Czy Einstein prawidłowo przewidział ruch satelitów?

Okazało się, że nawet, gdy pozwolimy satelitom poruszać się w sposób dowolny, potwierdzają one słuszność teorii Einsteina. Zatem, po raz pierwszy udało się udowodnić za sprawą obserwacji zmian wielkości i kształtu orbit sztucznych satelitów, że czasoprzestrzeń jest zakrzywiona i nieliniowa tak, jak Einstein przewidział ponad 100 lat temu, a zakrzywiona czasoprzestrzeń zmienia ruch satelitów.

Wielkość orbity (czyli półoś wielka) zmienia się o -28.3 mm, gdy satelita Galileo znajduje się w perygeum, czyli najbliżej Ziemi oraz o -7.8 mm, gdy satelita Galileo wystrzelony na orbitę eliptyczną znajdzie się w apogeum. Natomiast dla orbit kołowych zmiana wyniesie ok. -17.4 mm. Średni efekt wynosiłby -17.7 mm, gdyby wziąć pod uwagę tylko masę Ziemi, lecz po uwzględnieniu poprawki na masę Słońca i obrót Ziemi całkowity efekt relatywistyczny wynosi średnio -17.4 mm. Zmiany wielkości orbity zależą od tego, czy orbita jest w przybliżeniu kołowa, czy eliptyczna.

Mimo tego, że Einstein nigdy nie doczekał się wystrzelenia sztucznego satelity, gdyż zmarł 2 lata przed wyniesieniem na orbitę Sputnika-1, to jako pierwszy opisał dokładnie jak się będą poruszać. Dopiero wykorzystując najnowsze osiągnięcia i dokładności oferowane przez systemy nawigacyjne w XXI wieku jesteśmy w stanie stwierdzić, że miał rację.

Co z kształtem orbit?

W przypadku satelitów Galileo na orbitach eliptycznych, ogólna teoria względności zmienia kształt i rozmiar orbity w perygeum w taki sposób, że orbita staje się mniejsza, ale bardziej kołowa. W apogeum półoś wielka maleje, ale ekscentryczność wzrasta, a zatem orbita staje się bardziej eliptyczna. W związku z tym zmienność wielkości orbity dla orbit eliptycznych jest w dużym stopniu kompensowana przez zmiany kształtu orbity, a zatem całkowity efekt zmiany wysokości satelity jest znacznie mniejszy niż wpływ na wielkość i kształt orbity pojedynczo.

Co ciekawe, zmiany kształtu orbity wynikające z teorii względności nie zależą od eliptyczności orbity (czyli inaczej niż ma to miejsce w przypadku wielkości orbity). Orbita w przybliżeniu kołowa zmienia swój kształt podobnie jak orbita eliptyczna. Jest to dość nieoczywiste zjawisko, które przewiduje teoria względności, a które nigdy nie zostało bezpośrednio pomierzone przez innych naukowców. Dopiero obserwacje 80 satelitów GPS, GLONASS i Galileo pozwoliły na potwierdzenie tego faktu.

Jak dokładnie możemy stwierdzić, że Einstein miał rację?

Udało się potwierdzić efekty wynikające z ogólnej teorii względności z błędem względnym 0.36 proc. po przeanalizowaniu 3 lat z okresu, gdy dane satelitarne były najdokładniejsze. Było to możliwe w rozwiązaniu, które pozwala na dowolny ruch satelitów, czyli w rozwiązaniu dopuszczającym znalezienie optymalnej wartości krzywizny i nieliniowości czasoprzestrzeni przez każdego satelitę wykorzystanego w obliczeniach. W przypadku założenia, że krzywizna i nieliniowość czasoprzestrzeni nie ulegają zmianie, wartość zgodności byłaby jeszcze większa. Tym samym, można stwierdzić, że w najbardziej pesymistycznym wariancie, Einstein miał rację z prawdopodobieństwem 99.64 proc.

 

Źródło i fot.: Uniwersytet Przyrodniczy we Wrocławiu