Dodano: 16 grudnia 2021r.

Badania rezonansów Feshbacha. Fizycy z UW na okładce „Nature”

Naukowcy z Wydziału Fizyki Uniwersytetu Warszawskiego pod kierunkiem dra hab. Michała Tomzy i grupy doświadczalnej prof. Tobiasa Schaetza z Uniwersytetu we Fryburgu jako pierwsi zaobserwowali rezonanse Feshbacha pomiędzy pojedynczym jonem i ultrazimnymi atomami. Artykuł podsumowujący wyniki ich badań ukazał się w „Nature”. Publikacja została dodatkowo wyróżniona na okładce czasopisma.

Badania rezonansów Feshbacha. Fizycy z UW na okładce „Nature”

 

Świat ma kwantową naturę, której jednak na co dzień nie obserwujemy. Do jej ujawnienia pomocne jest znaczne obniżenie temperatury, pozwalające na pojawienie się zjawisk, takich jak nadciekłość czy nadprzewodnictwo. Dobrym przykładem kwantowej materii są również ultrazimne gazy atomów, schłodzone do ułamka stopnia powyżej zera bezwzględnego. W takich warunkach oddziaływania pomiędzy atomami można kontrolować za pomocą pól elektromagnetycznych, wykorzystując zjawisko rezonansów Feshbacha. Magnetyczne rezonanse Feshbacha znacząco zwiększają częstość zderzeń w momencie dostrojenia energii stanów molekularnych do energii zderzających się atomów.

Naukowcom z Uniwersytetu we Fryburgu oraz Wydziału Fizyki Uniwersytetu Warszawskiego udało się po raz pierwszy zaobserwować i wyjaśnić takie rezonanse pomiędzy pojedynczym jonem i ultrazimnymi atomami. Efekty swojej pracy opisali w artykule, opublikowanym na łamach najnowszego "Nature" (DOI: 10.1038/s41586-021-04112-y).

Zrozumieć kwantową naturę świata

W doświadczeniu rezonanse obserwowano jako wzrost prawdopodobieństwa utraty jonu na skutek jego reakcji z parami atomów dla konkretnych wartości pola magnetycznego. Udało się również zademonstrować wzrost częstości zderzeń dwuciałowych w pobliżu rezonansu, co umożliwia efektywne schłodzenie jonu. Analiza teoretyczna pozwoliła na określenie nieznanych dotąd parametrów oddziaływań, ale też na przewidzenie pozycji rezonansów, których początkowo eksperyment nie wykrył - czytamy w informacji prasowej poświęconej publikacji w "Nature".

Badania przedstawione w „Nature” są najważniejszym wynikiem projektu NCN pt. „Ultrazimne kwantowe mieszaniny jonów z atomami, cząsteczkami i atomami rydbergowskimi: nowe hybrydowe układy i zastosowania”, realizowanego w latach 2017-2021 przez fizyka i chemika dr hab. Michała Tomzę. Naukowiec ten specjalizuje się w kwantowym opisie materii w ultraniskich temperaturach, w tym - w teorii oddziaływań i zderzeń ultrazimnych atomów, jonów i cząsteczek. Za opis teoretyczny oddziaływań i zderzeń pomiędzy ultrazimnymi atomami, jonami i cząsteczkami dr Tomza otrzymał w 2020 r. nagrodę NCN w dziedzinie nauk ścisłych i technicznych.

Współautorami badań opisanych w "Nature" są członkowie grupy stworzonej na Uniwersytecie Warszawskim – doktorant Dariusz Wiater i magistrantka Agata Wojciechowska, współpracownik z Wydziału Fizyki UW dr Krzysztof Jachymski oraz naukowcy z niemieckiego ośrodka.

Rodzące się technologie kwantowe

NCN przypomina, że ultrazimne układy jon-atom mają wiele potencjalnych zastosowań, takich jak obliczenia i symulacje kwantowe, wymagają jednak uzyskania znacznie niższych temperatur, niż gazy neutralnych atomów. Kilka grup doświadczalnych latami pracowało na ten sukces przy wsparciu obliczeniowym m.in. fizyków z Warszawy.

Wyniki otwierają drogę do kolejnej generacji eksperymentów, w których stan kwantowy jonu będzie można znacznie łatwiej kontrolować. Niższa energia i dłuższy czas życia jonu pozwolą na zbadanie nowych zjawisk i wytworzenie nowych interesujących stanów kwantowej materii, które z jednej strony pomogą lepiej zrozumieć kwantową naturę świata, a z drugiej strony będę kolejnym elementem rodzących się technologii kwantowych. Można spodziewać się, że rezonanse Feshbacha pomiędzy jonem i atomami zostaną w krótkim czasie zaobserwowane również dla innych kombinacji pierwiastków.

Wcześniej we współpracy grupy dra Tomzy z grupą doświadczalną prof. Rene Gerritsmy z Uniwersytetu w Amsterdamie udało się po raz pierwszy schłodzić pojedynczy jon zanurzony w ultrazimnym gazie atomów do reżimu kwantowego zderzeń jon-atom i zaobserwować rezonanse kształtu. Wyniki tamtej współpracy zostały opublikowane w czasopiśmie „Nature Physics” w 2020 r. (DOI: 10.1038/s41567-019-0772-5).

 

Źródło: www.naukawpolsce.pl, fot. Nature